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Lecture 13: October 9

Our next goal is to prove Theorem 10.2. From a polarized variation of Hodge
structure of weight n on the punctured disk ∆∗, we constructed a period mapping
Φ: H̃ → D, and a holomorphic mapping Ψ: ∆∗ → Ď; the two are related by the
formula Ψ(ez) = e−zRΦ(z).

Theorem. With notation as above, the mapping

∆∗ → D, t 7→ e−
1
2RN e−

1
2L(t)RSe

1
2 logL(t)HΨ(t),

extends continuously over the origin in ∆. More precisely, the following is true:

(a) The limit

F̂H = lim
t→0

e−
1
2L(t)RSe

1
2 logL(t)HΨ(t) ∈ Ď

exists, and e−
1
2RN F̂H ∈ D. In other words, e−

1
2RN F̂H defines a Hodge

structure of weight n on the vector space V , polarized by the pairing h.
(b) The filtration F̂H is compatible with the semisimple operators RS and H,

in the sense that RSF̂
p
H ⊆ F̂ pH and HF̂ pH ⊆ F̂ pH for every p ∈ Z.

(c) One has RN F̂
p
H ⊆ F̂ p−1

H for every p ∈ Z.

Unfortunately, the proof I had in mind has a gap, and so we will not be able to
prove the most important part of the statement, namely that e−

1
2RN F̂H ∈ D. (But

it is known to be true by Schmid’s SL2-orbit theorem.)
Let us start by analyzing the effect of the various exponential factors. The

following lemma says, roughly speaking, that they serve to make the filtration
“compatible” with the eigenspace decomposition of RS and H.

Lemma 13.1. Let S ∈ End(V ) be a semisimple endomorphism with real eigenval-
ues. For any z ∈ Ď, the limit

ẑ = lim
x→∞

exSz

exists in Ď, and the corresponding filtration Fẑ is compatible with the eigenspace
decomposition V =

⊕
Eλ(S). Moreover, there is a constant C ≥ 0 such that

dĎ
(
ẑ, exSz

)
≤ Ce−δx,

where δ > 0 is the smallest distance between consecutive eigenvalues of S.

Proof. Since a filtration is just a collection of subspaces, it suffices to prove that
for any subspace W ⊆ V of dimension d, the limit

Ŵ = lim
x→∞

exSV ′

exists (in the Grassmannian of d-dimensional subspaces of V ), and satisfies

Ŵ =
⊕

λ∈R
Ŵ ∩ Eλ(S).

To make it clear what is going on, let us first do the case where W = Cv is one-
dimensional. Write v =

∑
λ vλ, where Svλ = λvλ. Then

exSv =
∑

λ

eλxvλ.

Let µ ∈ R be the largest number such that vµ 6= 0. From

exS(Cv) = C
(
vµ +

∑

λ<µ

e−(µ−λ)xvλ

)
,
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we see that limx→∞ exS(Cv) exists and equals Cvµ. So the effect of the limit is to
extract the component of v for the largest possible eigenvalue. Moreover, the rate
of convergence is e−(µ−µ′)x, where µ′ < µ is the next largest eigenvalue of S.

In the general case, let λ1 < λ2 < · · · < λn be the eigenvalues of S in increasing
order, and consider the filtration G• by increasing eigenvalues, with terms

Gj = Eλ1
(S)⊕ · · · ⊕ Eλj (S) ⊆ V.

Set W1 = W ∩G1; choose a subspace W2 ⊆W such that W1⊕W2 = W ∩G2; and so
on. Continuing in this way, we obtain a collection of subspaces W1, . . . ,Wn ⊆ W ,
possibly zero, with the property that

W ∩Gj = W1 ⊕ · · · ⊕Wj .

By construction, any nonzero vector v ∈ Wj must have a nontrivial component
vλj ∈ Eλj (S), and as we have seen above, exS(Cv) therefore converges to Cvλj at

a rate of e−(λj−λj−1)x. It follows that the subspace exSWj converges, at the same

rate, to a subspace Ŵj ⊆ Eλj (S), which consists of the Eλj (S)-components of all
the vectors in Wj . Putting everything together, we find that

lim
x→∞

exSW =

n⊕

j=1

lim
x→∞

exSWj =

n⊕

j=1

Ŵj .

The rate of convergence is e−δx, where δ > 0 is the smallest distance between
consecutive eigenvalues of S. �

Note. Here is an equivalent way for describing the limit in terms of the filtration
G•. Projecting W ⊆ V to the subquotient Gj/Gj−1 yields the subspace

W ∩Gj +Gj−1

Gj−1
⊆ Gj
Gj−1

.

Since W ∩ Gj + Gj−1 = Wj + Gj−1, the subspace Ŵj ⊆ Eλj (S) is exactly the
preimage of the above subspace under the isomorphism Eλj (S) ∼= Gj/Gj−1.

For the exponential factor e
1
2 logL(t)H , the filtration by increasing eigenvalues of

H is exactly the monodromy weight filtration W•; moreover, the rate of convergence
is e−

1
2 logL(t) = L(t)−

1
2 , since the eigenvalues of H are typically consecutive integers.

For the other exponential factor e−
1
2L(t)RS = e

1
2L(t)(−RS), the relevant filtration is

by decreasing eigenvalues of RS ; the rate of convergence is e−δL(t) = |t|2δ, where
δ > 0 is the minimal distance among consecutive eigenvalues of RS . So in both
cases, what matters is the order of growth of the factor |t|2αL(t)`, which grows
more quickly if ` ∈ N is larger and if α ∈ R is smaller. This is consistent with the
discussion in Lecture 10.

Proof of the theorem. Recall from Theorem 9.1 that Ψ extends holomorphically
to the entire disk. This gives us the estimate

dĎ
(
Ψ(t),Ψ(0)

)
≤ C|t|

for some constant C > 0. Here Ψ(0) ∈ Ď. Using Lemma 11.5, we deduce that

dĎ
(
e−

1
2L(t)RSΨ(t), e−

1
2L(t)RSΨ(0)

)
≤ ‖Ad e−

1
2L(t)RS‖ · C|t|.

Now the operator norm of e−
1
2L(t)RS is bounded by a constant times |t|−(1−ε) for

some ε > 0, due to the fact that all eigenvalues of RS lie in a half-open interval of
length 1. Moreover, if we set

zlim = lim
t→0

e−
1
2L(t)RSΨ(0) ∈ Ď,
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we also have (from Lemma 13.1) the distance estimate

dĎ
(
e−

1
2L(t)RSΨ(0), zlim

)
≤ C|t|2δ,

where δ > 0 is the smallest distance between consecutive eigenvalues of RS . Because
of the triangle inequality, we then get

(13.2) dĎ
(
e−

1
2L(t)RSΨ(t), zlim

)
≤ C|t|ε

for some constant C > 0 and some ε > 0. The filtration Flim corresponding to the
point zlim ∈ Ď can be described concretely as follows: take the filtration FΨ(0), and
make it compatible with the eigenspace decomposition of RS , by projecting to the
subquotients of the filtration by decreasing eigenvalues of RS .

We can now add on the second exponential factor e
1
2 logL(t)H . On the one hand,

Lemma 11.5 gives us

dĎ
(
e

1
2 logL(t)He−

1
2L(t)RSΨ(t), e

1
2 logL(t)Hzlim

)
≤ CL(t)`|t|ε

for some ` ∈ N, due to the fact that the operator norm of e
1
2 logL(t) is bounded by

a constant multiple of L(t)`. On the other hand, the limit

ẑH = lim
t→0

e
1
2 logL(t)Hzlim ∈ Ď

exists, and we have the distance estimate

dĎ
(
e

1
2 logL(t)Hzlim , ẑH

)
≤ C · L(t)−

1
2 .

Putting everything together, we find that

dĎ
(
e

1
2 logL(t)He−

1
2L(t)RSΨ(t), ẑH

)
≤ C

(
L(t)`|t|ε + L(t)−

1
2

)
,

and since the right-hand side goes to zero as t→ 0, we conclude that the limit

lim
t→0

e
1
2 logL(t)He−

1
2L(t)RSΨ(t) = ẑH

exists in Ď. As before, the filtration F̂H corresponding to the point ẑH ∈ Ď is
obtained by starting from the filtration Flim , and making it compatible with the
eigenspace decomposition of H by projecting to the subquotients of the monodromy
weight filtration W•(RN ) (which is the filtration by increasing eigenvalues of H).

It is easy to see from the construction that the two semisimple operators RS
and H preserve the filtration F̂H . Indeed, by Lemma 13.1, the filtration Flim is
compatible with the eigenspace decomposition of RS , and so RSF

p
lim ⊆ F

p
lim ; since

RS commutes with H, it follows that RSF̂
p
H ⊆ F̂ pH for all p ∈ Z. The same argument

shows that also HF̂ pH ⊆ F̂ pH for all p ∈ Z.

The proof that RN F̂
p
H ⊆ F̂ p−1

H is a bit more involved; ultimately, it comes down

to the horizontality of the period mapping Φ: H̃→ D. We start by considering the
filtration corresponding to the point Ψ(0) ∈ Ď.

Lemma 13.3. We have RF pΨ(0) ⊆ F
p−1
Ψ(0) for all p ∈ Z.

Proof. Recall from Lecture 12 that Φ(z) = g(z) · o, where g : H̃→ GR is a smooth
function. We have seen (in Lecture 7) that the derivative of the period mapping at

the point z ∈ H̃ takes the tangent vector ∂
∂z to a horizontal tangent vector

Ψ∗

(
∂

∂z

)
∈ F−1

Φ(z) End(V )
/
F 0

Φ(z) End(V ).

Moreover, by general facts about homogeneous spaces (see Lecture 6), we have

Ψ∗

(
∂

∂z

)
=

∂

∂z
g(z) · g(z)−1.
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Now Ψ(ez) = e−zRΦ(z) = e−zRg(z) · o, and the image of the tangent vector ∂
∂z

under the differential of this mapping is therefore

∂

∂z

(
e−zRg(z)

)
· g(z)−1ezR = −R+ e−zR Ψ∗

(
∂

∂z

)
ezR.

Note that the second terms belongs to F−1
Ψ(t) End(V )

/
F 0

Ψ(t) End(V ), where t = ez.

Since Ψ extends holomorphically over the origin, the mapping Ψ(t) = Ψ(ez) takes
the tangent vector ∂

∂z to the vector

ez ·Ψ∗
(
∂

∂t

)
= t ·Ψ∗

(
∂

∂t

)
,

which goes to zero at a rate of |t|. The conclusion is that

R ∈ F−1
Ψ(0) End(V )

/
F 0

Ψ(0),

which is exactly what we wanted to show. �

Next, let us prove the corresponding result for the filtration Flim . Recall that

Flim = lim
t→0

e−
1
2L(t)RSFΨ(0)

is compatible with the eigenspace decomposition of RS . Therefore

RNF
p
lim = RF plim = lim

t→0
e−

1
2L(t)RS)RF pΨ(0) ⊆ lim

t→0
e−

1
2L(t)RS)F p−1

Ψ(0) = F p−1
lim .

Finally, we can show that RN F̂
p
H ⊆ F̂ p−1

H for all p ∈ Z. By definition,

F̂H = lim
t→0

e
1
2 logL(t)HFlim .

A brief computation shows that e−
1
2 logL(T )RNe

1
2 logL(t)H = L(t)−1RN , and so

RN F̂
p
H = lim

t→0
RNe

1
2 logL(t)HF plim = lim

t→0
e

1
2 logL(t)HRNF

p
lim

⊆ lim
t→0

e
1
2 logL(t)HF p−1

lim = F̂ p−1
H .

This is what we needed to prove.

Nilpotent orbits. The estimates from the proof of Theorem 10.2 lead to various
approximations of the original period mapping Φ: H̃→ D. The first approximation
is constructed from the point Ψ(0) ∈ Ď.

Exercise 13.1. Show that the holomorphic mapping

H̃→ Ď, z 7→ ezRΨ(0),

is horizontal, and that there is a constant B > 0 such that ezRΨ(0) ∈ D whenever
Re z < −B. (Hint: Use the function g(z) to translate everything into a neighbor-
hood of the base point o ∈ D.)

We can consider ezRΨ(0) as the period mapping of a polarized variation of
Hodge structure on a sufficiently small punctured neighborhood of the origin; the
monodromy transformation is of course still e2πiR. In effect, we have replaced the
holomorphic mapping Ψ: H̃ → Ď by its value at the origin; the Hodge bundles of
the new variation of Hodge structure are now constant subbundles of the canonical
extension.

The second approximation, which Schmid’s calls the approximating nilpotent
orbit, is constructed from the point zlim ∈ Ď.
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Exercise 13.2. Show that the holomorphic mapping

H̃→ Ď, z 7→ ezRN zlim ,

is horizontal, and that there is a constant B > 0 such that ezRN zlim ∈ D whenever
Re z < −B.

The name “nilpotent orbit” comes from the fact that RN is nilpotent. Since the
filtration Flim is compatible with the eigenspace decomposition of RS , we get the
same result if we replace RN by R in the above formula. We can therefore consider
ezRN zlim as the period mapping for a variation of Hodge structure on a sufficiently
small punctured neighborhood of the origin, whose monodromy transformation is
either e2πiRN or e2πiR; both choices are allowed.
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